Vorhersage von Smoothing Techniques Diese Seite ist ein Teil der JavaScript E-Labs Lernobjekte für die Entscheidungsfindung. Andere JavaScript in dieser Serie sind unter verschiedenen Bereichen von Anwendungen im Abschnitt MENU auf dieser Seite kategorisiert. Eine Zeitreihe ist eine Folge von Beobachtungen, die zeitlich geordnet sind. Inhärent in der Sammlung von Daten über die Zeit genommen ist eine Form der zufälligen Variation. Es gibt Methoden zur Verringerung der Annullierung der Wirkung aufgrund zufälliger Variation. Weit verbreitete Techniken sind Glättung. Diese Techniken, wenn richtig angewandt, zeigt deutlicher die zugrunde liegenden Trends. Geben Sie die Zeitreihe Row-weise in der Reihenfolge beginnend mit der linken oberen Ecke und den Parametern ein, und klicken Sie dann auf die Schaltfläche Berechnen, um eine Prognose für eine Periode zu erhalten. Blank Boxen sind nicht in den Berechnungen, sondern Nullen enthalten. Wenn Sie Ihre Daten eingeben, um von Zelle zu Zelle in der Daten-Matrix zu bewegen, verwenden Sie die Tabulatortaste nicht Pfeil oder geben Sie die Tasten ein. Merkmale der Zeitreihen, die durch die Untersuchung seines Graphen aufgezeigt werden könnten. Mit den prognostizierten Werten und dem Residualverhalten, Condition Prognose Modellierung. Moving Averages: Gleitende Durchschnitte zählen zu den beliebtesten Techniken für die Vorverarbeitung von Zeitreihen. Sie werden verwendet, um zufälliges weißes Rauschen aus den Daten zu filtern, um die Zeitreihe glatter zu machen oder sogar bestimmte in der Zeitreihe enthaltene Informationskomponenten zu betonen. Exponentialglättung: Dies ist ein sehr populäres Schema, um eine geglättete Zeitreihe zu erzeugen. Während in den gleitenden Durchschnitten die bisherigen Beobachtungen gleich gewichtet werden, erhält die exponentielle Glättung exponentiell abnehmende Gewichte, wenn die Beobachtung älter wird. Mit anderen Worten, die jüngsten Beobachtungen sind relativ mehr Gewicht in der Prognose gegeben als die älteren Beobachtungen. Double Exponential Smoothing ist besser im Umgang mit Trends. Triple Exponential Smoothing ist besser im Umgang mit Parabeltrends. Ein exponentiell gewichteter gleitender Durchschnitt mit einer Glättungskonstanten a. Entspricht in etwa einem einfachen gleitenden Durchschnitt der Länge (d. h. Periode) n, wobei a und n durch a 2 (n1) OR n (2 - a) a verknüpft sind. So würde beispielsweise ein exponentiell gewichteter gleitender Durchschnitt mit einer Glättungskonstante gleich 0,1 etwa einem 19 Tage gleitenden Durchschnitt entsprechen. Und ein 40 Tage einfacher gleitender Durchschnitt würde etwa einem exponentiell gewichteten gleitenden Durchschnitt mit einer Glättungskonstanten gleich 0,04878 entsprechen. Holts Lineare Exponentialglättung: Angenommen, die Zeitreihe ist nicht saisonal, sondern zeigt Trend. Holts-Methode schätzt sowohl das aktuelle Niveau als auch den aktuellen Trend. Beachten Sie, dass der einfache gleitende Durchschnitt ein Spezialfall der exponentiellen Glättung ist, indem die Periode des gleitenden Mittelwertes auf den ganzzahligen Teil von (2-Alpha) Alpha gesetzt wird. Für die meisten Geschäftsdaten ist ein Alpha-Parameter kleiner als 0,40 oft effektiv. Man kann jedoch eine Gittersuche des Parameterraums mit 0,1 bis 0,9 mit Inkrementen von 0,1 durchführen. Dann hat das beste Alpha den kleinsten mittleren Absolutfehler (MA Error). Wie man mehrere Glättungsmethoden miteinander vergleicht: Obwohl es numerische Indikatoren für die Beurteilung der Genauigkeit der Prognosetechnik gibt, besteht der am weitesten verbreitete Ansatz darin, einen visuellen Vergleich mehrerer Prognosen zu verwenden, um deren Genauigkeit zu beurteilen und zwischen den verschiedenen Prognosemethoden zu wählen. Bei diesem Ansatz muss man auf demselben Graphen die ursprünglichen Werte einer Zeitreihenvariablen und die vorhergesagten Werte aus verschiedenen Prognoseverfahren aufzeichnen und damit einen visuellen Vergleich erleichtern. Sie können die Vergangenheitsvorhersage von Smoothing Techniques JavaScript verwenden, um die letzten Prognosewerte basierend auf Glättungstechniken zu erhalten, die nur einen einzigen Parameter verwenden. Holt - und Winters-Methoden zwei bzw. drei Parameter, daher ist es keine leichte Aufgabe, die optimalen oder sogar nahezu optimalen Werte durch Versuch und Fehler für die Parameter auszuwählen. Die einzelne exponentielle Glättung betont die kurzreichweite Perspektive, die sie den Pegel auf die letzte Beobachtung setzt und basiert auf der Bedingung, dass es keinen Trend gibt. Die lineare Regression, die auf eine Linie der kleinsten Quadrate zu den historischen Daten (oder transformierten historischen Daten) passt, repräsentiert die lange Reichweite, die auf dem Grundtrend konditioniert ist. Holts lineare exponentielle Glättung erfasst Informationen über die jüngsten Trend. Die Parameter im Holts-Modell sind Ebenenparameter, die verringert werden sollten, wenn die Menge der Datenvariation groß ist, und der Trends-Parameter sollte erhöht werden, wenn die jüngste Trendrichtung durch das Kausale beeinflusst wird. Kurzfristige Prognose: Beachten Sie, dass jeder JavaScript auf dieser Seite eine einstufige Prognose zur Verfügung stellt. Um eine zweistufige Prognose zu erhalten. Fügen Sie einfach den prognostizierten Wert an das Ende der Zeitreihendaten und klicken Sie dann auf die Schaltfläche Berechnen. Sie können diesen Vorgang für ein paar Mal wiederholen, um die benötigten kurzfristigen Prognosen zu erhalten. Simple Moving Average - SMA Was ist ein einfacher Moving Average - SMA Ein einfacher gleitender Durchschnitt (SMA) ist ein arithmetischer gleitender Durchschnitt, der durch Hinzufügen des Schließens berechnet wird Preis der Sicherheit für eine Reihe von Zeitperioden und dann dividiert diese Summe durch die Anzahl der Zeiträume. Wie in der obigen Grafik gezeigt, beobachten viele Händler kurzfristige Durchschnittswerte, um längerfristige Durchschnittswerte zu überschreiten, um den Beginn eines Aufwärtstrends zu signalisieren. Kurzzeitmittel können als Stufen der Unterstützung zu handeln, wenn der Preis erlebt ein Pullback. Laden des Players. Breaking Down Einfach Moving Average - SMA Ein einfacher gleitender Durchschnitt anpassbar ist, dass es für eine unterschiedliche Anzahl von Zeitperioden berechnet werden, indem einfach der Schlusskurs der Sicherheit für eine Anzahl von Zeitperioden das Hinzufügen und dann durch die Anzahl diese Summe dividiert Von Zeiträumen, die den durchschnittlichen Preis der Sicherheit über den Zeitraum gibt. Ein einfacher gleitender Durchschnitt glättet die Volatilität und macht es einfacher, die Preisentwicklung eines Wertpapiers zu sehen. Wenn der einfache gleitende Durchschnitt nach oben zeigt, bedeutet dies, dass der Sicherheitspreis steigt. Wenn es nach unten zeigt, bedeutet dies, dass der Sicherheitspreis sinkt. Je länger der Zeitrahmen für den gleitenden Durchschnitt, desto glatter der einfache gleitende Durchschnitt. Ein kürzerer bewegter Durchschnitt ist volatiler, aber sein Messwert ist näher an den Quelldaten. Analytische Bedeutung Die gleitenden Durchschnitte sind ein wichtiges analytisches Instrument, um aktuelle Preisentwicklungen und das Potenzial für eine Veränderung eines etablierten Trends zu identifizieren. Die einfachste Form der Verwendung eines einfachen gleitenden Durchschnitt in der Analyse ist es, schnell zu identifizieren, ob eine Sicherheit in einem Aufwärtstrend oder Abwärtstrend ist. Ein weiteres populäres, wenn auch etwas komplexeres analytisches Werkzeug, besteht darin, ein Paar einfacher gleitender Durchschnitte mit jeweils unterschiedlichen Zeitrahmen zu vergleichen. Liegt ein kürzerer einfacher gleitender Durchschnitt über einem längerfristigen Durchschnitt, wird ein Aufwärtstrend erwartet. Auf der anderen Seite signalisiert ein langfristiger Durchschnitt über einem kürzerfristigen Durchschnitt eine Abwärtsbewegung im Trend. Beliebte Trading-Muster Zwei beliebte Trading-Muster, die einfache gleitende Durchschnitte verwenden, schließen das Todeskreuz und ein goldenes Kreuz ein. Ein Todeskreuz tritt auf, wenn die 50-tägige einfache gleitende Durchschnitt unter dem 200-Tage gleitenden Durchschnitt kreuzt. Dies wird als bärisch signalisiert, dass weitere Verluste auf Lager sind. Das goldene Kreuz tritt auf, wenn ein kurzfristiger gleitender Durchschnitt über einen langfristigen gleitenden Durchschnitt bricht. Verstärkt durch hohe Handelsvolumina, kann dies signalisieren, weitere Gewinne sind im Laden.
Comments
Post a Comment